0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 AND
↳7 IDP
↳8 IDPNonInfProof (⇒)
↳9 AND
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 TRUE
↳16 IDP
↳17 IDependencyGraphProof (⇔)
↳18 TRUE
public class MinusMin{
public static int min (int x, int y) {
if (x < y) return x;
else return y;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int res = 0;
while (min(x-1,y) == y) {
y++;
res++;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 24 rules for P and 2 rules for R.
Combined rules. Obtained 2 rules for P and 0 rules for R.
Filtered ground terms:
968_0_main_ConstantStackPush(x1, x2, x3, x4) → 968_0_main_ConstantStackPush(x2, x3, x4)
Cond_968_0_main_ConstantStackPush1(x1, x2, x3, x4, x5) → Cond_968_0_main_ConstantStackPush1(x1, x3, x4, x5)
Cond_968_0_main_ConstantStackPush(x1, x2, x3, x4, x5) → Cond_968_0_main_ConstantStackPush(x1, x3, x4, x5)
Filtered duplicate args:
968_0_main_ConstantStackPush(x1, x2, x3) → 968_0_main_ConstantStackPush(x2, x3)
Cond_968_0_main_ConstantStackPush1(x1, x2, x3, x4) → Cond_968_0_main_ConstantStackPush1(x1, x3, x4)
Cond_968_0_main_ConstantStackPush(x1, x2, x3, x4) → Cond_968_0_main_ConstantStackPush(x1, x3, x4)
Combined rules. Obtained 2 rules for P and 0 rules for R.
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x1[0] <= x0[0] - 1 && x0[0] >= 0 →* TRUE)∧(x1[0] →* x1[1])∧(x0[0] →* x0[1]))
(1) -> (0), if ((x1[1] + 1 →* x1[0])∧(x0[1] →* x0[0]))
(1) -> (2), if ((x1[1] + 1 →* x0_-1[2])∧(x0[1] →* x0[2]))
(2) -> (3), if ((x0[2] >= 0 && x0[2] - 1 < x0[2] - 1 && x0_-1[2] = x0[2] - 1 →* TRUE)∧(x0_-1[2] →* x0_-1[3])∧(x0[2] →* x0[3]))
(3) -> (0), if ((x0[3] - 1 + 1 →* x1[0])∧(x0[3] →* x0[0]))
(3) -> (2), if ((x0[3] - 1 + 1 →* x0_-1[2])∧(x0[3] →* x0[2]))
(1) (&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 968_0_MAIN_CONSTANTSTACKPUSH(x1[0], x0[0])≥NonInfC∧968_0_MAIN_CONSTANTSTACKPUSH(x1[0], x0[0])≥COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])), ≥))
(2) (<=(x1[0], -(x0[0], 1))=TRUE∧>=(x0[0], 0)=TRUE ⇒ 968_0_MAIN_CONSTANTSTACKPUSH(x1[0], x0[0])≥NonInfC∧968_0_MAIN_CONSTANTSTACKPUSH(x1[0], x0[0])≥COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])), ≥))
(3) (x0[0] + [-1] + [-1]x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(4) (x0[0] + [-1] + [-1]x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(5) (x0[0] + [-1] + [-1]x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(6) (x0[0] + [-1] + [-1]x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(7) (x0[0] + [-1] + x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(8) (x0[0] ≥ 0∧[1] + x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_13] + [bni_13]x1[0] + [bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(9) (COND_968_0_MAIN_CONSTANTSTACKPUSH(TRUE, x1[1], x0[1])≥NonInfC∧COND_968_0_MAIN_CONSTANTSTACKPUSH(TRUE, x1[1], x0[1])≥968_0_MAIN_CONSTANTSTACKPUSH(+(x1[1], 1), x0[1])∧(UIncreasing(968_0_MAIN_CONSTANTSTACKPUSH(+(x1[1], 1), x0[1])), ≥))
(10) ((UIncreasing(968_0_MAIN_CONSTANTSTACKPUSH(+(x1[1], 1), x0[1])), ≥)∧[(-1)bso_16] ≥ 0)
(11) ((UIncreasing(968_0_MAIN_CONSTANTSTACKPUSH(+(x1[1], 1), x0[1])), ≥)∧[(-1)bso_16] ≥ 0)
(12) ((UIncreasing(968_0_MAIN_CONSTANTSTACKPUSH(+(x1[1], 1), x0[1])), ≥)∧[(-1)bso_16] ≥ 0)
(13) ((UIncreasing(968_0_MAIN_CONSTANTSTACKPUSH(+(x1[1], 1), x0[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)
(14) (&&(&&(>=(x0[2], 0), <(-(x0[2], 1), -(x0[2], 1))), =(x0_-1[2], -(x0[2], 1)))=TRUE∧x0_-1[2]=x0_-1[3]∧x0[2]=x0[3] ⇒ 968_0_MAIN_CONSTANTSTACKPUSH(x0_-1[2], x0[2])≥NonInfC∧968_0_MAIN_CONSTANTSTACKPUSH(x0_-1[2], x0[2])≥COND_968_0_MAIN_CONSTANTSTACKPUSH1(&&(&&(>=(x0[2], 0), <(-(x0[2], 1), -(x0[2], 1))), =(x0_-1[2], -(x0[2], 1))), x0_-1[2], x0[2])∧(UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH1(&&(&&(>=(x0[2], 0), <(-(x0[2], 1), -(x0[2], 1))), =(x0_-1[2], -(x0[2], 1))), x0_-1[2], x0[2])), ≥))
(15) (>=(x0[2], 0)=TRUE∧<(-(x0[2], 1), -(x0[2], 1))=TRUE∧>=(x0_-1[2], -(x0[2], 1))=TRUE∧<=(x0_-1[2], -(x0[2], 1))=TRUE ⇒ 968_0_MAIN_CONSTANTSTACKPUSH(x0_-1[2], x0[2])≥NonInfC∧968_0_MAIN_CONSTANTSTACKPUSH(x0_-1[2], x0[2])≥COND_968_0_MAIN_CONSTANTSTACKPUSH1(&&(&&(>=(x0[2], 0), <(-(x0[2], 1), -(x0[2], 1))), =(x0_-1[2], -(x0[2], 1))), x0_-1[2], x0[2])∧(UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH1(&&(&&(>=(x0[2], 0), <(-(x0[2], 1), -(x0[2], 1))), =(x0_-1[2], -(x0[2], 1))), x0_-1[2], x0[2])), ≥))
(16) (x0[2] ≥ 0∧[-1] ≥ 0∧x0-1[2] + [1] + [-1]x0[2] ≥ 0∧x0[2] + [-1] + [-1]x0-1[2] ≥ 0 ⇒ (UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH1(&&(&&(>=(x0[2], 0), <(-(x0[2], 1), -(x0[2], 1))), =(x0_-1[2], -(x0[2], 1))), x0_-1[2], x0[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[2] ≥ 0∧[-2 + (-1)bso_18] ≥ 0)
(17) (x0[2] ≥ 0∧[-1] ≥ 0∧x0-1[2] + [1] + [-1]x0[2] ≥ 0∧x0[2] + [-1] + [-1]x0-1[2] ≥ 0 ⇒ (UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH1(&&(&&(>=(x0[2], 0), <(-(x0[2], 1), -(x0[2], 1))), =(x0_-1[2], -(x0[2], 1))), x0_-1[2], x0[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[2] ≥ 0∧[-2 + (-1)bso_18] ≥ 0)
(18) (x0[2] ≥ 0∧[-1] ≥ 0∧x0-1[2] + [1] + [-1]x0[2] ≥ 0∧x0[2] + [-1] + [-1]x0-1[2] ≥ 0 ⇒ (UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH1(&&(&&(>=(x0[2], 0), <(-(x0[2], 1), -(x0[2], 1))), =(x0_-1[2], -(x0[2], 1))), x0_-1[2], x0[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[2] ≥ 0∧[-2 + (-1)bso_18] ≥ 0)
(19) (COND_968_0_MAIN_CONSTANTSTACKPUSH1(TRUE, x0_-1[3], x0[3])≥NonInfC∧COND_968_0_MAIN_CONSTANTSTACKPUSH1(TRUE, x0_-1[3], x0[3])≥968_0_MAIN_CONSTANTSTACKPUSH(+(-(x0[3], 1), 1), x0[3])∧(UIncreasing(968_0_MAIN_CONSTANTSTACKPUSH(+(-(x0[3], 1), 1), x0[3])), ≥))
(20) ((UIncreasing(968_0_MAIN_CONSTANTSTACKPUSH(+(-(x0[3], 1), 1), x0[3])), ≥)∧[2 + (-1)bso_20] ≥ 0)
(21) ((UIncreasing(968_0_MAIN_CONSTANTSTACKPUSH(+(-(x0[3], 1), 1), x0[3])), ≥)∧[2 + (-1)bso_20] ≥ 0)
(22) ((UIncreasing(968_0_MAIN_CONSTANTSTACKPUSH(+(-(x0[3], 1), 1), x0[3])), ≥)∧[2 + (-1)bso_20] ≥ 0)
(23) ((UIncreasing(968_0_MAIN_CONSTANTSTACKPUSH(+(-(x0[3], 1), 1), x0[3])), ≥)∧0 = 0∧0 = 0∧[2 + (-1)bso_20] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(968_0_MAIN_CONSTANTSTACKPUSH(x1, x2)) = [-1] + x2
POL(COND_968_0_MAIN_CONSTANTSTACKPUSH(x1, x2, x3)) = [-1] + x3
POL(&&(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(COND_968_0_MAIN_CONSTANTSTACKPUSH1(x1, x2, x3)) = [1] + x3
POL(<(x1, x2)) = [-1]
POL(=(x1, x2)) = [-1]
968_0_MAIN_CONSTANTSTACKPUSH(x0_-1[2], x0[2]) → COND_968_0_MAIN_CONSTANTSTACKPUSH1(&&(&&(>=(x0[2], 0), <(-(x0[2], 1), -(x0[2], 1))), =(x0_-1[2], -(x0[2], 1))), x0_-1[2], x0[2])
COND_968_0_MAIN_CONSTANTSTACKPUSH1(TRUE, x0_-1[3], x0[3]) → 968_0_MAIN_CONSTANTSTACKPUSH(+(-(x0[3], 1), 1), x0[3])
968_0_MAIN_CONSTANTSTACKPUSH(x1[0], x0[0]) → COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])
968_0_MAIN_CONSTANTSTACKPUSH(x0_-1[2], x0[2]) → COND_968_0_MAIN_CONSTANTSTACKPUSH1(&&(&&(>=(x0[2], 0), <(-(x0[2], 1), -(x0[2], 1))), =(x0_-1[2], -(x0[2], 1))), x0_-1[2], x0[2])
968_0_MAIN_CONSTANTSTACKPUSH(x1[0], x0[0]) → COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])
COND_968_0_MAIN_CONSTANTSTACKPUSH(TRUE, x1[1], x0[1]) → 968_0_MAIN_CONSTANTSTACKPUSH(+(x1[1], 1), x0[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if ((x1[1] + 1 →* x1[0])∧(x0[1] →* x0[0]))
(0) -> (1), if ((x1[0] <= x0[0] - 1 && x0[0] >= 0 →* TRUE)∧(x1[0] →* x1[1])∧(x0[0] →* x0[1]))
(1) (&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 968_0_MAIN_CONSTANTSTACKPUSH(x1[0], x0[0])≥NonInfC∧968_0_MAIN_CONSTANTSTACKPUSH(x1[0], x0[0])≥COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])), ≥))
(2) (<=(x1[0], -(x0[0], 1))=TRUE∧>=(x0[0], 0)=TRUE ⇒ 968_0_MAIN_CONSTANTSTACKPUSH(x1[0], x0[0])≥NonInfC∧968_0_MAIN_CONSTANTSTACKPUSH(x1[0], x0[0])≥COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])), ≥))
(3) (x0[0] + [-1] + [-1]x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [bni_8]x0[0] + [(-1)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(4) (x0[0] + [-1] + [-1]x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [bni_8]x0[0] + [(-1)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(5) (x0[0] + [-1] + [-1]x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [bni_8]x0[0] + [(-1)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(6) (x0[0] + [-1] + [-1]x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [bni_8]x0[0] + [(-1)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(7) (x0[0] + [-1] + x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [bni_8]x0[0] + [bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(8) (x0[0] ≥ 0∧[1] + x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(9) (COND_968_0_MAIN_CONSTANTSTACKPUSH(TRUE, x1[1], x0[1])≥NonInfC∧COND_968_0_MAIN_CONSTANTSTACKPUSH(TRUE, x1[1], x0[1])≥968_0_MAIN_CONSTANTSTACKPUSH(+(x1[1], 1), x0[1])∧(UIncreasing(968_0_MAIN_CONSTANTSTACKPUSH(+(x1[1], 1), x0[1])), ≥))
(10) ((UIncreasing(968_0_MAIN_CONSTANTSTACKPUSH(+(x1[1], 1), x0[1])), ≥)∧[1 + (-1)bso_11] ≥ 0)
(11) ((UIncreasing(968_0_MAIN_CONSTANTSTACKPUSH(+(x1[1], 1), x0[1])), ≥)∧[1 + (-1)bso_11] ≥ 0)
(12) ((UIncreasing(968_0_MAIN_CONSTANTSTACKPUSH(+(x1[1], 1), x0[1])), ≥)∧[1 + (-1)bso_11] ≥ 0)
(13) ((UIncreasing(968_0_MAIN_CONSTANTSTACKPUSH(+(x1[1], 1), x0[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(968_0_MAIN_CONSTANTSTACKPUSH(x1, x2)) = [1] + x2 + [-1]x1
POL(COND_968_0_MAIN_CONSTANTSTACKPUSH(x1, x2, x3)) = [1] + x3 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
COND_968_0_MAIN_CONSTANTSTACKPUSH(TRUE, x1[1], x0[1]) → 968_0_MAIN_CONSTANTSTACKPUSH(+(x1[1], 1), x0[1])
968_0_MAIN_CONSTANTSTACKPUSH(x1[0], x0[0]) → COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])
968_0_MAIN_CONSTANTSTACKPUSH(x1[0], x0[0]) → COND_968_0_MAIN_CONSTANTSTACKPUSH(&&(<=(x1[0], -(x0[0], 1)), >=(x0[0], 0)), x1[0], x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer